Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33170000

RESUMO

The protonation state of the iron(IV) oxo (or ferryl) form of ascorbate peroxidase compound II (APX-II) is a subject of debate. It has been reported that this intermediate is best described as an iron(IV) hydroxide species. Neutron diffraction data obtained from putative APX-II crystals indicate a protonated oxygenic ligand at 1.88 Å from the heme iron. This finding, if correct, would be unprecedented. A basic iron(IV) oxo species has yet to be spectroscopically observed in a histidine-ligated heme enzyme. The importance of ferryl basicity lies in its connection to our fundamental understanding of C-H bond activation. Basic ferryl species have been proposed to facilitate the oxidation of inert C-H bonds, reactions that are unknown for histidine-ligated hemes enzymes. To provide further insight into the protonation status of APX-II, we examined the intermediate using a combination of Mössbauer and X-ray absorption spectroscopies. Our data indicate that APX-II is an iron(IV) oxo species with an Fe-O bond distance of 1.68 Å, a K-edge pre-edge absorption of 18 units, and Mössbauer parameters of ΔEq = 1.65 mm/s and δ = 0.03 mm/s.

2.
J Synchrotron Radiat ; 25(Pt 5): 1565-1573, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30179198

RESUMO

This paper describes a new large-range rapid-scan X-ray fluorescence (XRF) imaging station at beamline 6-2 at the Stanford Synchrotron Radiation Lightsource at SLAC National Accelerator Laboratory. This station uses a continuous rapid-scan system with a scan range of 1000 × 600 mm and a load capacity of up to 25 kg, capable of 25-100 µm resolution elemental XRF mapping and X-ray absorption spectroscopy (XAS) of a wide range of objects. XRF is measured using a four-element Hitachi Vortex ME4 silicon drift detector coupled to a Quantum Detectors Xspress3 multi-channel analyzer system. A custom system allows the X-ray spot size to be changed quickly and easily via pinholes ranging from 25 to 100 µm, and the use of a poly-capillary or axially symmetric achromatic optic may achieve a <10 µm resolution in the future. The instrument is located at wiggler beamline 6-2 which has an energy range of 2.1-17 keV, creating K emission for elements up to strontium, and L or M emission for all other elements. XAS can also be performed at selected sample positions within the same experiment, allowing for a more detailed chemical characterization of the elements of interest. Furthermore, sparse excitation energy XRF imaging can be performed over a wide range of incident X-ray energies. User friendliness has been emphasized in all stages of the experiment, including versatile sample mounts, He purged chambers for low-Z analyses, and intuitive visualization hardware and software. The station provides analysis capabilities for a wide range of materials and research fields including biological, chemical, environmental and materials science, paleontology, geology and cultural heritage.

3.
J Am Chem Soc ; 138(49): 16016-16023, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27960340

RESUMO

We report on the protonation state of Helicobacter pylori catalase compound II. UV/visible, Mössbauer, and X-ray absorption spectroscopies have been used to examine the intermediate from pH 5 to 14. We have determined that HPC-II exists in an iron(IV) hydroxide state up to pH 11. Above this pH, the iron(IV) hydroxide complex transitions to a new species (pKa = 13.1) with Mössbauer parameters that are indicative of an iron(IV)-oxo intermediate. Recently, we discussed a role for an elevated compound II pKa in diminishing the compound I reduction potential. This has the effect of shifting the thermodynamic landscape toward the two-electron chemistry that is critical for catalase function. In catalase, a diminished potential would increase the selectivity for peroxide disproportionation over off-pathway one-electron chemistry, reducing the buildup of the inactive compound II state and reducing the need for energetically expensive electron donor molecules.


Assuntos
Catalase/química , Helicobacter pylori/enzimologia , Hidróxidos/química , Compostos de Ferro/química , Sítios de Ligação , Catalase/metabolismo , Concentração de Íons de Hidrogênio , Hidróxidos/metabolismo , Compostos de Ferro/metabolismo , Estrutura Molecular , Espectrofotometria Ultravioleta , Espectroscopia de Mossbauer , Espectroscopia por Absorção de Raios X
4.
Inorg Chem ; 55(20): 10800-10809, 2016 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-27689821

RESUMO

The addition of Lewis or Brönsted acids (LA = Zn(OTf)2, B(C6F5)3, HBArF, TFA) to the high-valent manganese-oxo complex MnV(O)(TBP8Cz) results in the stabilization of a valence tautomer MnIV(O-LA)(TBP8Cz•+). The ZnII and B(C6F5)3 complexes were characterized by manganese K-edge X-ray absorption spectroscopy (XAS). The position of the edge energies and the intensities of the pre-edge (1s to 3d) peaks confirm that the Mn ion is in the +4 oxidation state. Fitting of the extended X-ray absorption fine structure (EXAFS) region reveals 4 N/O ligands at Mn-Nave = 1.89 Å and a fifth N/O ligand at 1.61 Å, corresponding to the terminal oxo ligand. This Mn-O bond length is elongated compared to the MnV(O) starting material (Mn-O = 1.55 Å). The reactivity of MnIV(O-LA)(TBP8Cz•+) toward C-H substrates was examined, and it was found that H• abstraction from C-H bonds occurs in a 1:1 stoichiometry, giving a MnIV complex and the dehydrogenated organic product. The rates of C-H cleavage are accelerated for the MnIV(O-LA)(TBP8Cz•+) valence tautomer as compared to the MnV(O) valence tautomer when LA = ZnII, B(C6F5)3, and HBArF, whereas for LA = TFA, the C-H cleavage rate is slightly slower than when compared to MnV(O). A large, nonclassical kinetic isotope effect of kH/kD = 25-27 was observed for LA = B(C6F5)3 and HBArF, indicating that H-atom transfer (HAT) is the rate-limiting step in the C-H cleavage reaction and implicating a potential tunneling mechanism for HAT. The reactivity of MnIV(O-LA)(TBP8Cz•+) toward C-H bonds depends on the strength of the Lewis acid. The HAT reactivity is compared with the analogous corrole complex MnIV(O-H)(tpfc•+) recently reported (J. Am. Chem. Soc. 2015, 137, 14481-14487).

5.
Nat Commun ; 7: 12634, 2016 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-27572475

RESUMO

To understand how hierarchically structured functional materials operate, analytical tools are needed that can reveal small structural and chemical details in large sample volumes. Often, a single method alone is not sufficient to get a complete picture of processes happening at multiple length scales. Here we present a correlative approach combining three-dimensional X-ray imaging techniques at different length scales for the analysis of metal poisoning of an individual catalyst particle. The correlative nature of the data allowed establishing a macro-pore network model that interprets metal accumulations as a resistance to mass transport and can, by tuning the effect of metal deposition, simulate the response of the network to a virtual ageing of the catalyst particle. The developed approach is generally applicable and provides an unprecedented view on dynamic changes in a material's pore space, which is an essential factor in the rational design of functional porous materials.


Assuntos
Catálise , Imageamento Tridimensional/métodos , Metais/química , Análise Espectral/métodos , Fluorescência , Teste de Materiais/métodos , Microscopia/instrumentação , Microscopia/métodos , Modelos Químicos , Tamanho da Partícula , Porosidade , Análise Espectral/instrumentação , Síncrotrons , Microtomografia por Raio-X/instrumentação , Microtomografia por Raio-X/métodos
6.
Proc Natl Acad Sci U S A ; 112(45): 13845-9, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26515097

RESUMO

Biocatalysis by nitrogenase, particularly the reduction of N2 and CO by this enzyme, has tremendous significance in environment- and energy-related areas. Elucidation of the detailed mechanism of nitrogenase has been hampered by the inability to trap substrates or intermediates in a well-defined state. Here, we report the capture of substrate CO on the resting-state vanadium-nitrogenase in a catalytically competent conformation. The close resemblance of this active CO-bound conformation to the recently described structure of CO-inhibited molybdenum-nitrogenase points to the mechanistic relevance of sulfur displacement to the activation of iron sites in the cofactor for CO binding. Moreover, the ability of vanadium-nitrogenase to bind substrate in the resting-state uncouples substrate binding from subsequent turnover, providing a platform for generation of defined intermediate(s) of both CO and N2 reduction.


Assuntos
Monóxido de Carbono/metabolismo , Nitrogenase/metabolismo , Monóxido de Carbono/química , Espectroscopia de Ressonância de Spin Eletrônica , Modelos Moleculares , Nitrogenase/química , Especificidade por Substrato
7.
Nat Chem ; 7(9): 696-702, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26291940

RESUMO

Cytochrome P450 (P450) and chloroperoxidase (CPO) are thiolate-ligated haem proteins that catalyse the activation of carbon hydrogen bonds. The principal intermediate in these reactions is a ferryl radical species called compound I. P450 compound I (P450-I) is significantly more reactive than CPO-I, which only cleaves activated C-H bonds. To provide insight into the differing reactivities of these intermediates, we examined CPO-I and P450-I using variable-temperature Mössbauer and X-ray absorption spectroscopies. These measurements indicate that the Fe-S bond is significantly shorter in P450-I than in CPO-I. This difference in Fe-S bond lengths can be understood in terms of variations in the hydrogen-bonding patterns within the 'cys-pocket' (a portion of the proximal helix that encircles the thiolate ligand). Weaker hydrogen bonding in P450-I results in a shorter Fe-S bond, which enables greater electron donation from the axial thiolate ligand. This observation may in part explain P450's greater propensity for C-H bond activation.


Assuntos
Proteínas Arqueais/metabolismo , Cloreto Peroxidase/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Ferro/química , Enxofre/química , Proteínas Arqueais/química , Proteínas Arqueais/genética , Biocatálise , Carbono/química , Cloreto Peroxidase/química , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/genética , Espectroscopia de Ressonância de Spin Eletrônica , Fungos/enzimologia , Hidrogênio/química , Ligação de Hidrogênio , Cinética , Oxirredução , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Espectroscopia de Mossbauer , Sulfolobus acidocaldarius/metabolismo , Temperatura
8.
J Am Chem Soc ; 136(25): 9124-31, 2014 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-24875119

RESUMO

To provide insight into the iron(IV)hydroxide pK(a) of histidine ligated heme proteins, we have probed the active site of myoglobin compound II over the pH range of 3.9-9.5, using EXAFS, Mössbauer, and resonance Raman spectroscopies. We find no indication of ferryl protonation over this pH range, allowing us to set an upper limit of 2.7 on the iron(IV)hydroxide pK(a) in myoglobin. Together with the recent determination of an iron(IV)hydroxide pK(a) ∼ 12 in the thiolate-ligated heme enzyme cytochrome P450, this result provides insight into Nature's ability to tune catalytic function through its choice of axial ligand.


Assuntos
Histidina/química , Hidróxidos/química , Ferro/química , Mioglobina/química , Catálise , Domínio Catalítico , Concentração de Íons de Hidrogênio , Ligantes , Estrutura Molecular , Espectroscopia de Mossbauer , Análise Espectral Raman , Espectroscopia por Absorção de Raios X
9.
Science ; 342(6160): 825-9, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24233717

RESUMO

Cytochrome P450 enzymes activate oxygen at heme iron centers to oxidize relatively inert substrate carbon-hydrogen bonds. Cysteine thiolate coordination to iron is posited to increase the pK(a) (where K(a) is the acid dissociation constant) of compound II, an iron(IV)hydroxide complex, correspondingly lowering the one-electron reduction potential of compound I, the active catalytic intermediate, and decreasing the driving force for deleterious auto-oxidation of tyrosine and tryptophan residues in the enzyme's framework. Here, we report on the preparation of an iron(IV)hydroxide complex in a P450 enzyme (CYP158) in ≥90% yield. Using rapid mixing technologies in conjunction with Mössbauer, ultraviolet/visible, and x-ray absorption spectroscopies, we determine a pK(a) value for this compound of 11.9. Marcus theory analysis indicates that this elevated pK(a) results in a >10,000-fold reduction in the rate constant for oxidations of the protein framework, making these processes noncompetitive with substrate oxidation.


Assuntos
Cisteína/análogos & derivados , Sistema Enzimático do Citocromo P-450/química , Hidróxidos/química , Carbono/química , Catálise , Cisteína/química , Ativação Enzimática , Ligação de Hidrogênio , Oxirredução , Triptofano/química , Tirosina/química
10.
J Am Chem Soc ; 135(45): 16758-61, 2013 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-24094084

RESUMO

A class Ia ribonucleotide reductase (RNR) employs a µ-oxo-Fe2(III/III)/tyrosyl radical cofactor in its ß subunit to oxidize a cysteine residue ~35 Å away in its α subunit; the resultant cysteine radical initiates substrate reduction. During self-assembly of the Escherichia coli RNR-ß cofactor, reaction of the protein's Fe2(II/II) complex with O2 results in accumulation of an Fe2(III/IV) cluster, termed X, which oxidizes the adjacent tyrosine (Y122) to the radical (Y122(•)) as the cluster is converted to the µ-oxo-Fe2(III/III) product. As the first high-valent non-heme-iron enzyme complex to be identified and the key activating intermediate of class Ia RNRs, X has been the focus of intensive efforts to determine its structure. Initial characterization by extended X-ray absorption fine structure (EXAFS) spectroscopy yielded a Fe-Fe separation (d(Fe-Fe)) of 2.5 Å, which was interpreted to imply the presence of three single-atom bridges (O(2-), HO(-), and/or µ-1,1-carboxylates). This short distance has been irreconcilable with computational and synthetic models, which all have d(Fe-Fe) ≥ 2.7 Å. To resolve this conundrum, we revisited the EXAFS characterization of X. Assuming that samples containing increased concentrations of the intermediate would yield EXAFS data of improved quality, we applied our recently developed method of generating O2 in situ from chlorite using the enzyme chlorite dismutase to prepare X at ~2.0 mM, more than 2.5 times the concentration realized in the previous EXAFS study. The measured d(Fe-Fe) = 2.78 Å is fully consistent with computational models containing a (µ-oxo)2-Fe2(III/IV) core. Correction of the d(Fe-Fe) brings the experimental data and computational models into full conformity and informs analysis of the mechanism by which X generates Y122(•).


Assuntos
Escherichia coli/enzimologia , Ferro/química , Ribonucleotídeo Redutases/química , Cristalografia por Raios X , Escherichia coli/química , Ferro/metabolismo , Modelos Moleculares , Oxirredução , Ribonucleotídeo Redutases/metabolismo , Espectroscopia de Mossbauer , Tirosina/análogos & derivados , Tirosina/metabolismo
11.
J Biol Chem ; 288(24): 17074-81, 2013 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-23632017

RESUMO

Recently, we reported the spectroscopic and kinetic characterizations of cytochrome P450 compound I in CYP119A1, effectively closing the catalytic cycle of cytochrome P450-mediated hydroxylations. In this minireview, we focus on the developments that made this breakthrough possible. We examine the importance of enzyme purification in the quest for reactive intermediates and report the preparation of compound I in a second P450 (P450ST). In an effort to bring clarity to the field, we also examine the validity of controversial reports claiming the production of P450 compound I through the use of peroxynitrite and laser flash photolysis.


Assuntos
Proteínas Arqueais/química , Sistema Enzimático do Citocromo P-450/química , Proteínas Arqueais/isolamento & purificação , Biocatálise , Sistema Enzimático do Citocromo P-450/isolamento & purificação , Humanos , Hidroxilação , Ferro/química , Ferro/isolamento & purificação , Oxirredução , Termodinâmica
12.
Inorg Chem ; 49(20): 9178-90, 2010 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-20839847

RESUMO

The reaction of a series of thiolate-ligated iron(II) complexes [Fe(II)([15]aneN(4))(SC(6)H(5))]BF(4) (1), [Fe(II)([15]aneN(4))(SC(6)H(4)-p-Cl)]BF(4) (2), and [Fe(II)([15]aneN(4))(SC(6)H(4)-p-NO(2))]BF(4) (3) with alkylhydroperoxides at low temperature (-78 °C or -40 °C) leads to the metastable alkylperoxo-iron(III) species [Fe(III)([15]aneN(4))(SC(6)H(5))(OOtBu)]BF(4) (1a), [Fe(III)([15]aneN(4))(SC(6)H(4)-p-Cl)(OOtBu)]BF(4) (2a), and [Fe(III)([15]aneN(4))(SC(6)H(4)-p-NO(2))(OOtBu)]BF(4) (3a), respectively. X-ray absorption spectroscopy (XAS) studies were conducted on the Fe(III)-OOR complexes and their iron(II) precursors. The edge energy for the iron(II) complexes (∼7118 eV) shifts to higher energy upon oxidation by ROOH, and the resulting edge energies for the Fe(III)-OOR species range from 7121-7125 eV and correlate with the nature of the thiolate donor. Extended X-ray absorption fine structure (EXAFS) analysis of the iron(II) complexes 1-3 in CH(2)Cl(2) show that their solid state structures remain intact in solution. The EXAFS data on 1a-3a confirm their proposed structures as mononuclear, 6-coordinate Fe(III)-OOR complexes with 4N and 1S donors completing the coordination sphere. The Fe-O bond distances obtained from EXAFS for 1a-3a are 1.82-1.85 Å, significantly longer than other low-spin Fe(III)-OOR complexes. The Fe-O distances correlate with the nature of the thiolate donor, in agreement with the previous trends observed for ν(Fe-O) from resonance Raman (RR) spectroscopy, and supported by optimized geometries obtained from density functional theory (DFT) calculations. Reactivity and kinetic studies on 1a- 3a show an important influence of the thiolate donor.


Assuntos
Ferro/química , Compostos Organometálicos/química , Enxofre/química , Espectroscopia por Absorção de Raios X , Cinética , Ligantes , Modelos Moleculares , Conformação Molecular , Prótons
13.
Biochemistry ; 48(20): 4331-43, 2009 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-19245217

RESUMO

Aliphatic halogenases activate O(2), cleave alpha-ketoglutarate (alphaKG) to CO(2) and succinate, and form haloferryl [X-Fe(IV)O; X = Cl or Br] complexes that cleave aliphatic C-H bonds to install halogens during the biosynthesis of natural products by non-ribosomal peptide synthetases (NRPSs). For the related alphaKG-dependent dioxygenases, it has been shown that reaction of the Fe(II) cofactor with O(2) to form the C-H bond-cleaving ferryl complex is "triggered" by binding of the target substrate. In this study, we have tested for and defined structural determinants of substrate triggering (ST) in the halogenase, SyrB2, from the syringomycin E biosynthetic NRPS of Pseudomonas syringae B301D. As for other halogenases, the substrate of SyrB2 is complex, consisting of l-Thr tethered via a thioester linkage to a covalently bound phosphopantetheine (PPant) cofactor of a carrier protein, SyrB1. Without an appended amino acid, SyrB1 does not trigger formation of the chloroferryl intermediate state in SyrB2, even in the presence of free l-Thr or its analogues, but SyrB1 charged either by l-Thr (l-Thr-S-SyrB1) or by any of several non-native amino acids does trigger the reaction by as much as 8000-fold (for the native substrate). Triggering efficacy is sensitive to the structures of both the amino acid and the carrier protein, being diminished by 5-24-fold when the native l-Thr is replaced with another amino acid and by approximately 40-fold when SyrB1 is replaced with the heterologous carrier protein, CytC2. The directing effect of the carrier protein and consequent tolerance for profound modifications to the target amino acid allow the chloroferryl state to be formed in the presence of substrates that perturb the ratio of its two putative coordination isomers, lack the target C-H bond (l-Ala-S-SyrB1), or contain a C-H bond of enhanced strength (l-cyclopropylglycyl-S-SyrB1). For the latter two cases, the SyrB2 chloroferryl state so formed exhibits unprecedented stability (t(1/2) = 30-110 min at 0 degree C), can be trapped at high concentration and purity by manual freezing without a cryosolvent, and represents an ideal target for structural characterization. As initial steps toward this goal, extended X-ray absorption fine structure (EXAFS) spectroscopy has been used to determine the Fe-O and Fe-Cl distances and density functional theory (DFT) calculations have been used to confirm that the measured distances are consistent with the anticipated structure of the intermediate.


Assuntos
Carbono/química , Hidrogênio/química , Oxirredutases/química , Catálise , Cristalografia por Raios X , Cinética , Estrutura Molecular , Oxigênio/química , Oxigenases/química , Pseudomonas syringae/metabolismo , Espectrofotometria/métodos , Especificidade por Substrato , Temperatura , Fatores de Tempo
14.
J Am Chem Soc ; 130(43): 14189-200, 2008 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-18837497

RESUMO

Iron peroxide species have been identified as important intermediates in a number of nonheme iron as well as heme-containing enzymes, yet there are only a few examples of such species either synthetic or biological that have been well characterized. We describe the synthesis and structural characterization of a new series of five-coordinate (N4S(thiolate))Fe(II) complexes that react with tert-butyl hydroperoxide ((t)BuOOH) or cumenyl hydroperoxide (CmOOH) to give metastable alkylperoxo-iron(III) species (N4S(thiolate)Fe(III)-OOR) at low temperature. These complexes were designed specifically to mimic the nonheme iron active site of superoxide reductase, which contains a five-coordinate iron(II) center bound by one Cys and four His residues in the active form of the protein. The structures of the Fe(II) complexes are analyzed by X-ray crystallography, and their electrochemical properties are assessed by cyclic voltammetry. For the Fe(III)-OOR species, low-temperature UV-vis spectra reveal intense peaks between 500-550 nm that are typical of peroxide to iron(III) ligand-to-metal charge-transfer (LMCT) transitions, and EPR spectroscopy shows that these alkylperoxo species are all low-spin iron(III) complexes. Identification of the vibrational modes of the Fe(III)-OOR unit comes from resonance Raman (RR) spectroscopy, which shows nu(Fe-O) modes between 600-635 cm(-1) and nu(O-O) bands near 800 cm(-1). These Fe-O stretching frequencies are significantly lower than those found in other low-spin Fe(III)-OOR complexes. Trends in the data conclusively show that this weakening of the Fe-O bond arises from a trans influence of the thiolate donor, and density functional theory (DFT) calculations support these findings. These results suggest a role for the cysteine ligand in SOR, and are discussed in light of the recent assessments of the function of the cysteine ligand in this enzyme.


Assuntos
Derivados de Benzeno/química , Compostos Férricos/síntese química , Compostos Ferrosos/química , Modelos Químicos , Oxirredutases/química , Compostos de Sulfidrila/química , terc-Butil Hidroperóxido/química , Simulação por Computador , Cristalografia por Raios X , Eletroquímica , Eletrodos , Compostos Férricos/química , Ligantes , Modelos Moleculares , Estrutura Molecular , Espectrofotometria Ultravioleta/métodos , Análise Espectral Raman/métodos
15.
J Am Chem Soc ; 130(45): 15022-7, 2008 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-18937466

RESUMO

The class Ic ribonucleotide reductase from Chlamydia trachomatis ( Ct) uses a stable Mn(IV)/Fe(III) cofactor to initiate nucleotide reduction by a free-radical mechanism. Extended X-ray absorption fine structure (EXAFS) spectroscopy and density functional theory (DFT) calculations are used to postulate a structure for this cofactor. Fe and Mn K-edge EXAFS data yield an intermetallic distance of approximately 2.92 A. The Mn data also suggest the presence of a short 1.74 A Mn-O bond. These metrics are compared to the results of DFT calculations on 12 cofactor models derived from the crystal structure of the inactive Fe 2(III/III) form of the protein. Models are differentiated by the protonation states of their bridging and terminal OH X ligands as well as the location of the Mn(IV) ion (site 1 or 2). The models that agree best with experimental observation feature a mu-1,3-carboxylate bridge (E120), terminal solvent (H 2O/OH) to site 1, one mu-O bridge, and one mu-OH bridge. The site-placement of the metal ions cannot be discerned from the available data.


Assuntos
Chlamydia trachomatis/enzimologia , Coenzimas/química , Compostos Férricos/química , Manganês/química , Ribonucleotídeo Redutases/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Coenzimas/metabolismo , Compostos Férricos/metabolismo , Manganês/metabolismo , Modelos Moleculares , Processos Fotoquímicos , Ribonucleotídeo Redutases/metabolismo , Espectrometria por Raios X/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...